
WANG XI GAMES 104 2022

Basics of Game Rendering

Modern Game Engine - Theory and Practice

Rendering on Game Engine

Lecture 04

Modern Game Engine - Theory and Practice

Rendering System in Games

Q : Is there any game without rendering?

SpaceWar!

1962

Super Mario

1985

Doom

1993 2022

Horizon

Modern Game Engine - Theory and Practice

Rendering on Graphics Theory

• Objects with one type of effect

• Focus on representation and math correctness

• No strict performance requirement

- Realtime (30FPS) / interactive (10FPS)

 offline rendering

- Out-of-core rendering

Foundation of game engine rendering!

Modern Game Engine - Theory and Practice

Challenges on Game Rendering (1/4)

Tens of thousands of objects with dozens type of effects

Modern Game Engine - Theory and Practice

Challenges on Game Rendering (2/4)

• Deal with architecture of modern

computer with a complex

combination of CPU and GPU

Modern Game Engine - Theory and Practice

Challenges on Game Rendering (3/4)

HD

4K

8K

Commit a bullet-proof framerate

• 30FPS (60FPS, 120FPS+VR)

• 1080P, 4K and 8K resolution

Modern Game Engine - Theory and Practice

Challenges on Game Rendering (4/4)

• Limit access to CPU bandwidth

and memory footprint

• Game logic, network,

animation, physics and AI

systems are major consumers

of CPU and main memory

Modern Game Engine - Theory and Practice

Rendering on Game Engine

A heavily optimized practical software

framework to fulfill the critical rendering

requirements of games on modern

hardware (PC, console and mobiles)

Modern Game Engine - Theory and Practice

Outline of Rendering

Basics of Game Rendering
• Hardware architecture
• Render data organization
• Visibility

Materials, Shaders and Lighting
• PBR (SG, MR)
• Shader permutation
• Lighting

Special Rendering
• Terrain
• Sky / Fog
• Postprocess

Pipeline
• Forward, deferred rendering, forward plus
• Real pipeline with mixed effects
• Ring buffer and V-Sync
• Tiled-based rendering

Rendering can be
another 20+
lectures

• Point / Directional lighting
• IBL / Simple GI

Modern Game Engine - Theory and Practice

What Is not Included

• Cartoon Rendering

• 2D Rendering Engine

• Subsurface

• Hair / Fur

Modern Game Engine - Theory and Practice

Building Blocks of Rendering

Modern Game Engine - Theory and Practice

Rendering Pipeline and Data

Vertex Data

Triangle Data

Millions of vertices and triangles

Material Parameters

Textures

Tens of millions of pixels with hundreds
ALU and dozen of texture samplings

Modern Game Engine - Theory and Practice

Computation - Projection and Rasterization

Rasterization

Projection
Transform

Modern Game Engine - Theory and Practice

Computation - Shading
A shader sample code
• Constants / Parameters
• ALU algorithms
• Texture Sampling
• Branches

Modern Game Engine - Theory and Practice

• Step1
Use two nearest mipmap levels

• Step2
Perform bilinear interpolation
in both mip-maps

• Step3
Linearly interpolate between
the results

Computation - Texture Sampling

Modern Game Engine - Theory and Practice

GPU

The dedicated hardware to solve massive jobs

Understand the Hardware

Modern Game Engine - Theory and Practice

SIMD and SIMT

SIMD (Single Instruction Multiple Data)

• Describes computers with multiple processing
elements that perform the same operation on
multiple data points simultaneously

SIMT (Single Instruction Multiple Threads)

• An execution model used in parallel computing
where single instruction, multiple data (SIMD)
is combined with multithreading

Modern Game Engine - Theory and Practice

GPU Architecture GPC (Graphics Processing Cluster)
A dedicated hardware block for
computing, rasterization, shading,
and texturing

SM (Streaming Multiprocessor)
Part of the GPU that runs CUDA kernels

Texture Units
A texture processing unit, that can fetch and
filter a texture

CUDA Core
Parallel processor that allow data to be worked
on simultaneously by different processors

Warp
A collection of threads

Modern Game Engine - Theory and Practice

Data Flow from CPU to GPU

• CPU and Main Memory
 - Data Load / Unload
 - Data Preparation

• CPU to GPU
 - High Latency
 - Limited Bandwidth

• GPU and Video Memory
 - High Performance Parallel Rendering

Tips Always minimize data transfer between CPU and GPU when possible

Modern Game Engine - Theory and Practice

Be Aware of Cache Efficiency

• Take full advantage of hardware parallel computing

• Try to avoid the von Neumann bottleneck

Modern Game Engine - Theory and Practice

GPU Bounds and Performance

Application performance is limited by:
• Memory Bounds
• ALU Bounds
• TMU (Texture Mapping Unit) Bound
• BW (Bandwidth) Bound

Modern Game Engine - Theory and Practice

Modern Hardware Pipeline

Direct3D 12 graphics pipeline Mesh and amplification shaders

Direct3D 12 compute pipeline

Modern Game Engine - Theory and Practice

Other State-of-Art Architectures

GPU：

1.825 GHz, 52CUs, 12 TFLOPS FP32, 3328
streaming processors

DRAM：

16 GB GDDR6, 10GB high memory interleave +
6GB low memory interleave
20 channels of x16 GDDR6 @ 14 Gbps->560GB

CPU:
8x Zen2 CPU cores @ 3.8 GHz, 3.6 GHz w/SMT
32KB L1 I$,32KB L1 D$,512KB L2 per CPU core

Xbox Series X SOC Unified Memory Architecture

Modern Game Engine - Theory and Practice

Other State-of-Art Architectures

Immediate Mode GPUs

Tile-Based GPUs

Modern Game Engine - Theory and Practice

Renderable

Modern Game Engine - Theory and Practice

Mesh Render Component

• Everything is a game object in

the game world

• Game object could be

described in the component-

based way

Game Object

Components

Mesh Render
Component

Modern Game Engine - Theory and Practice

Building Blocks of Renderable
Helmet

Beard

Head

G36C

Torso
Pants

Modern Game Engine - Theory and Practice

Mesh Primitive

Modern Game Engine - Theory and Practice

Vertex and Index Buffer

• Vertex Data
• Vertex declaration

• Vertex buffer

• Index Data
• Index declaration

• Index buffer

Modern Game Engine - Theory and Practice

Why We Need Per-Vertex Normal

Interpolate vertex normal by triangle normal Per-Vertex normals necessary

Modern Game Engine - Theory and Practice

Materials

Base Smooth metal Glossy paint Rough stone Transparent glass

Determine the appearance of objects, and how objects interact with light

Modern Game Engine - Theory and Practice

Famous Material Models

Phong Model

PBR Model - Physically based rendering Subsurface Material - Burley SubSurface Profile

Modern Game Engine - Theory and Practice

Various Textures in Materials

Modern Game Engine - Theory and Practice

Variety of Shaders

Fix Function Shading Shaders

Custom Shaders

Modern Game Engine - Theory and Practice

Render Objects in Engine

Modern Game Engine - Theory and Practice

Coordinate System and Transformation
Model assets are made based on local coordinate systems,
and eventually we need to render them into screen space

Modern Game Engine - Theory and Practice

Object with Many Materials

Expected Actual

positions(x,y,z)

uvs(x,y)

IndexData

Vertex
Data

Mesh

Shader

Textures
Material

Modern Game Engine - Theory and Practice

How to Display Different
Textures on a Single Model

Submesh 0 Submesh 1 Submesh 2 Submesh 3

offset count

positions(x,y,z)

uvs(x,y)

IndexData

Vertex
Data

Shader 0

Textures

offset count offset count offset count

Shader 1

Textures

Shader 3

Textures

Shader 2

Textures
Material

Mesh

Helmet

Skin

Clothing

Shoes

Modern Game Engine - Theory and Practice

Submesh 0 Submesh 1 Submesh 2 Submesh 3
offset count

positions(x,y,z)

uvs(x,y)

IndexData

Vertex
Data

Shader 0
Textures

offset count offset count offset count
Shader 1
Textures

Shader 3
Textures

Shader 2
Textures

Submesh 0 Submesh 1 Submesh 2 Submesh 3
offset count

positions(x,y,z)

uvs(x,y)

IndexData

Vertex
Data

Shader 0
Textures

offset count offset count offset count
Shader 1
Textures

Shader 3
Textures

Shader 2
Textures

Submesh 0 Submesh 1 Submesh 2 Submesh 3
offset count

positions(x,y,z)

uvs(x,y)

IndexData

Vertex
Data

Shader 0
Textures

offset count offset count offset count
Shader 1
Textures

Shader 3
Textures

Shader 2
Textures

Submesh 0 Submesh 1 Submesh 2 Submesh 3
offset count

positions(x,y,z)

uvs(x,y)

IndexData

Vertex
Data

Shader 0
Textures

offset count offset count offset count
Shader 1
Textures

Shader 3
Textures

Shader 2
Textures

...

Wasting of memory

Modern Game Engine - Theory and Practice

Resource Pool

Modern Game Engine - Theory and Practice

Instance: Use Handle to Reuse Resources

Modern Game Engine - Theory and Practice

Sort by Material

Modern Game Engine - Theory and Practice

GPU Batch Rendering

What if group rendering all instances with identical submeshes and materials together?Q :

Modern Game Engine - Theory and Practice

Visibility Culling

Modern Game Engine - Theory and Practice

For each view, there are a lot of objects which aren't needed to be rendered.

Modern Game Engine - Theory and Practice

Culling One Object

View Frustum Solider Bounding Box

Modern Game Engine - Theory and Practice

Using the Simplest Bound to Create Culling

• Inexpensive intersection tests

• Tight fitting

• Inexpensive to compute

• Easy to rotate and transform

• Use little memory

Modern Game Engine - Theory and Practice

Hierarchical View Frustum Culling

Quad Tree Culling BVH (Bounding Volume Hierarchy) Culling

Modern Game Engine - Theory and Practice

Top-down

C D

Incremental tree-insertionBottom-up

Construction and Insertion of BVH in Game Engine

Modern Game Engine - Theory and Practice

PVS (Potential Visibility Set)

Modern Game Engine - Theory and Practice

Portal and PVS Data

Determine potentially visible leaf nodes immediately from portal

Generate PVS data from portal:

Modern Game Engine - Theory and Practice

The Idea of Using PVS in Stand-alone Games

Green box:

The area to determine the potential visibility where you need.

Blue cells:

Auto generated smaller regions of each green box.

Pros
• Much faster than BSP / Octree
• More flexible and compatible
• Preload resources by PVS

Modern Game Engine - Theory and Practice

GPU Culling

Modern Game Engine - Theory and Practice

Texture Compression
A must-know for game engine

Modern Game Engine - Theory and Practice

Texture Compression

• Traditional image compression like JPG and PNG

 - Good compression rates

 - Image quality

 - Designed to compress or decompress

 an entire image

• In game texture compression

 - Decoding speed

 - Random access

 - Compression rate and visual quality

 - Encoding speed

Sample JPEG format texture

Modern Game Engine - Theory and Practice

Block Compression

Common block-based compression format

• On PC, BC7 (modern) or
DXTC (old) formats

• On mobile, ASTC (modern) or
ETC / PVRTC (old) formats

Modern Game Engine - Theory and Practice

Authoring Tools of Modeling

Modern Game Engine - Theory and Practice

Modeling - Polymodeling

MAX MAYA BLENDER

Modern Game Engine - Theory and Practice

Modeling - Sculpting

Modern Game Engine - Theory and Practice

Modeling - Scanning

Modern Game Engine - Theory and Practice

Modeling - Procedural Modeling

Houdini Unreal

Modern Game Engine - Theory and Practice

Comparison of Authoring Methods

Polymodeling Sculpting Scanning Procedural
modeling

Sample

Advantage Flexible Creative Realistic Intelligent

Disadvantage Heavy workload Large volume of
data

Large volume of
data Hard to achieve

Modern Game Engine - Theory and Practice

Cluster-Based Mesh Pipeline

Modern Game Engine - Theory and Practice

Sculpting Tools Create Infinite Details
• Artists create models with infinite details

• From linear fps to open world fps, complex scene submit

10 more times triangles to GPU per-frame

Modern Game Engine - Theory and Practice

Cluster-Based Mesh Pipeline

GPU-Driven Rendering Pipeline (2015)
• Mesh Cluster Rendering

 - Arbitrary number of meshes in single drawcall

 - GPU-culled by cluster bounds

 - Cluster depth sorting

Geometry Rendering Pipeline Architecture (2021)
• Rendering primitives are divided as:

 - Batch: a single API draw (drawIndirect / drawIndexIndirect),

 composed of many Surfs

 - Surf: submeshes based on materials, composed of many Clusters

 - Cluster: 64 triangles strip

Modern Game Engine - Theory and Practice

Programmable Mesh Pipeline

Modern Game Engine - Theory and Practice

GPU Culling in Cluster-Based Mesh

350k triangles to 2791 clusters GPU Pipeline

Modern Game Engine - Theory and Practice

Nanite

• Hierarchical LOD clusters with seamless boundary

• Don’t need hardware support, but using a hierarchical

cluster culling on the precomputed BVH tree by

persistent threads (CS) on GPU instead of task shader

Modern Game Engine - Theory and Practice

Take Away

1. The design of game engine is deeply related to the hardware architecture design

2. A submesh design is used to support a model with multiple materials

3. Use culling algorithms to draw as few objects as possible

4. As GPU become more powerful, more and more work are moved into GPU, which called GPU Driven

Modern Game Engine - Theory and Practice

Modern Game Engine - Theory and Practice

Pilot Engine – Editor and Game

Modern Game Engine - Theory and Practice

Pilot Engine – Source Code

Modern Game Engine - Theory and Practice

• Editor
 - load / save level
 - add/delete/move/rotate/scale objects
 - Play In Editor (PIE)
• Renderer
 - forward shading
 - shadow
• Animation
 - simple skeleton animation
• Collision
 - sphere and box
• Character/Camera
 - first / third-person camera
• Motor
 - eight-direction moving + sprinting
• Single-threaded object-based ticking
• Resource manager
• Windows and Linux compatible

1st release (4/4/2022)
To be released with upcoming lectures

• More graphics features
 - fbx format support
 - submesh
• More animation features
 - animation blending
• Gameplay and script systems
• MacOS compatible
• And more…

• Multi-threaded framework
• Entity-Component-System (ECS)
• Space Partitioning

Not implemented

Modern Game Engine - Theory and Practice

Pilot Engine Download

Games104 Official WebSite:
https://cdn.boomingtech.com/games104_static/upload/Pilot.zip

GitHub：https://github.com/BoomingTech/Pilot

Modern Game Engine - Theory and Practice

Homework
• Build and run Pilot Engine

• Take a screenshot and upload

• Please refer to homework document for details

Homework Doc Screenshot

Modern Game Engine - Theory and Practice

Homework

• Homework information can be found on the course-site:

http://games104.boomingtech.com/sc/course-list/

• Download the homework materials for details.

Q&A

Modern Game Engine - Theory and Practice

Modern Game Engine - Theory and Practice

Lecture 04 Contributor

- 一将

- 光哥

- 炯哥

- 玉林

- 小老弟

- 建辉

- 爵爷

- Jason

- 砚书

- BOOK

- MANDY

- 俗哥

- 金大壮

- Leon

- 梨叔

- Shine

- 邓导

- Judy

- QIUU

- C佬

- 阿乐

- 阿熊

- CC

- 大喷

Modern Game Engine – Theory and Practice

Follow us for
further information

Enjoy ;)
Coding

Course Wechat

