&
7

Modern Game Engine - Theory and Practice BOOMING %% GAMES104

Lecture 04

Rendering on Game Engine

Basics of Game Rendering

WANG XI GAMES 104 2022

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Rendering System in Games

o

Is there any game without rendering?

e =

a
s

-
=

=T

=

SpaceWar! Super Mario Horizon

Modern Game Engine - Theory and Practice

BBOOMIHG
TECH

. GAMES104

Rendering on Graphics Theory

» Objects with one type of effect
* Focus on representation and math correctness
» No strict performance requirement
- Realtime (30FPS) / interactive (10FPS)
offline rendering

- Out-of-core rendering

Foundation of game engine rendering!

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Challenges on Game Rendering (1/4)

Horizol

FORBIDDEN WESY!

Tens of thousands of objects with dozens type of effects

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

»

Challenges on Game Rendering (2/4)

High-speed
graphics
card slot

 Deal with architecture of modern

computer with a complex Pt siots
combination of CPU and GPU | o :‘T%:f J sreehics

IDE, SATA, USE, Ethemet etc. - Off-board

peripherals :

, Keyboard, mouse, serial |
and parallel ports ete.

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Challenges on Game Rendering (3/4)

Speed Down
Speed Up
@ Altitude Down

B Attitude Up

§ Menu

0 walk

@ Dismiss Controls

Commit a bullet-proof framerate
« 30FPS (60FPS, 120FPS+VR)
« 1080P, 4K and 8K resolution

Modern Game Engine - Theory and Practice

BOOMING
[Rear . GAMES104

»

Challenges on Game Rendering (4/4)

on average 18.910 ms/frame (59.5 FPS), 20.187ms delta time, ©.000ms wait time
er logic ©.100 ms/frame (10.0 FPS), tick number: 4843

. . . 4
(] m = hero 1, soldier 401, mount @, mechanic 33, local @, total 435
I I aCCeSS O an WI t = flying ammo count 102, landed ammo count 12
unt = 453

count ystems 272 particles 3274; lite systems 4 particles 7017
count = static 1609, dynamic @, ragdoll 4, cloth @

and memory footprint

« Game logic, network,
animation, physics and Al
systems are major consumers

of CPU and main memory

s}
go_an go_ go_animation_graph_
nation_graph 'go_animation_g
limation_graph_update { 2.¢
go_animatic particle logi

©0_animatio go_animation_ particle logic|

|
go_animanon_graph_u; go_animation_graph_updat

go_¢ go_animation_graph_updat
go_animation_g go_animation_
go_animation_¢ go. go_animation_¢
go_ go_animation_graph_up
Chac go_animation_graph_upd
go_animation_grap
“¢ go_pre_r go_animation_grap
Se118
ren Chaos::CombatLegion::tryGro
ientTickManager::tickLogic { 5.89 ms }
“hread 20
_pre_r go_pre. go_animation_graph_update { 3.09 ms } Chaos::ClientTickM

“Thread 21
go_pre_rend go_animation_graj go_animé particle logic

" Thread 22

go_pre_re unblendable_bone_bl¢ go_animatic

Thread 23

Chaos::ClientT go_animation_graj go_animation_g particle logi
Thread 24
go_pre_rende go_animation_graph_t go_animation_graph_upt particle log

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Rendering on Game Engine

A heavily optimized practical software
framework to fulfill the critical rendering
requirements of games on modern

hardware (PC, console and mobiles)

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Outline of Rendering
Rendering can be

@ ﬂ 0) @ @ 0 another 20+

_ lectures
Basics of Game Rendering Special Rendering
« Hardware architecture e Terrain
* Render data organization - Sky/Fog
* Visibility « Postprocess
02 1 ©éh,)
Materials, Shaders and Lighting Pipeline
 PBR (SG, MR) « Forward, deferred rendering, forward plus
e Shader permutation « Real pipeline with mixed effects
* Lighting * Ring buffer and V-Sync
* Point / Directional lighting * Tiled-based rendering
e |BL/Simple Gl
_ J . J

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

What Is not Included

« Cartoon Rendering

« 2D Rendering Engine
« Subsurface

« Hair/ Fur

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Building Blocks of Rendering

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Rendering Pipeline and Data S
o °4 | Input: vertices in 3D space
£
Vertex Data nn
' 5 Vertices positioned in screen space
Triangle Data R

w Triangles positioned in screen space
Millions of vertices and triangles

Fragments (one per covered sample)

Material Parameters ¢

Textures e ? Shaded fragments

Tens of millions of pixels with hundreds |
ALU and dozen of texture samplings |

Output: image (pixels)

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Vertex in WORLD SPACE

Computation - Projection and Rasterization it

world-to-camera 4x4 Matrix | | Projection 4x4 Matrix

i

Vertex in CAMERA SPACE
(% ¥, 2)

VERTEX SHADER '

Vertex in Camera space
but with homogeneous coordinates
(% y, 2, w=1)

vecd gl_Position = vecd(x.y,z,1) * Mproj; l‘*

gl_Position.x = x*Mproj[8][0] + y*Mproj[1]1[@] + zsMproj[2]1(8] + (w = 1)*Mproj[3][];
gl_Position.y = x#Mprej[0][1] + ysMproj[11[1] + zaMprej[2]1[1]1 + (w = 1)#Mprej[3]1[1];
gl_Position.z = x#Mproj[@][2] + y*Mproj[1]1[2] + z#Mproj[2]1[2] + (w = 1)*Mproj[3][2];
gl_Position.w = x*Mproj[@][3] + y*Mproj[1]([3] + z#Mproj[2][3] + (w = 1)#+Mproj(3][3];

l

‘ HOMOGENEQUS CLIP SPACE

Projection

Transform

Clipping
-gl_Position.w <= gl_Paosition.x <= gl_Position.w
-gl_Position.w <= gl_Position.y <= gl_Position.w

O rth o gra p h I C p rOJ ectl 0 N (O) -gl_Position.w ;iglgtgf:gﬁ%ﬁf gl_Position.w

l

Perspective Divide (Normalization)
gl_Position.x /= gl_Pesition.w
gl_Position.y /= gl_Position.w
gl_Position.z /= gl_Position.w

!

‘ NDC SPACE [-1,1] I

!

Viewport Transform
gl_Position.x = (gl_Position.x + 1) * 0.5 * (Width - 1)
gl_Position.y = (1 - (gl_Position.y + 1) * 0.5) * (Height - 1)

|

RASTER SPACE
[0,W-1) [0,H-1]

Perspective projection (P)

I
Rasterization

Modern Game Engine - Theory and Practice

BOOMING
@TECH & GAMES104

Computation - Shading

A shader sample code
« Constants / Parameters
« ALU algorithms

» Texture Sampling

* Branches

struct PSTnpul

{

Eleat?2 ww 2 "EEXCOORIE:

// constant buffer 1
cbuffer cbData 1

{
float4d data;

TextureZD<floatd> tex;
SamplerState samplerLinear;

float4 PSMain (PSInput input) : SV_TARGET

// texture sample
floatd result = tex.Sample(samplerlLinear, i

// logical operators
float factor

|

= data.x * data.y:; :
|

// branch I
if (factor > 0) |
// logical operators 1
return data.z * result; :
else I
// logical operators 1
return data.w *# resulkt; I

Vertex Fetch | Tessellator || #‘9-:%9'1 '

|Attr|buts Sét’np‘ l Stream Output|

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Computation - Texture Sampling

» Step1

Use two nearest mipmap levels

» Step2
Perform bilinear interpolation
in both mip-maps

» Step3
Linearly interpolate between
the results

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Understand the Hardware

GPU

The dedicated hardware to solve massive jobs

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

SIMD and SIMT

Instruction

3 C—aib 0 Fetch/Decode @@DD@@
+ L ain ain ol 2000000
b EENED »00000000

1 | 1 | poooooo®

- DOO® SN

SIMD ADD ¢, a, b SIMT ADD ¢, a, b

SIMD (Single Instruction Multiple Data) SIMT (Single Instruction Multiple Threads)

« Describes computers with multiple processing * An execution model used in parallel computing
elements that perform the same operation on where single instruction, multiple data (SIMD)

multiple data points simultaneously iIs combined with multithreading

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

GPU Architecture GPC (Graphics Processing Cluster)

A dedicated hardware block for
computing, rasterization, shading,
and texturing

CUDA Core
el |l SM (Streaming Multiprocessor)
$ ¢ = || || Partofthe GPU that runs CUDA kernels

Texture Units

A texture processing unit, that can fetch and
— W |] filter a texture

CUDA Core
Parallel processor that allow data to be worked
on simultaneously by different processors

Warp
A collection of threads

Vertex Fetch | Tessellator || .Ilfﬂ ort

|Attribute Setup | | Stream Output |

Modern Game Engine - Theory and Practice

BOOMING
TECH GAMES104

Data Flow from CPU to GPU

Cores

t200-1 000

Cache

Cores
'~50 GB/s
~1-8
L1 Cache GB/s
CPU bus
~16 GB/s
Main Memory
PC
TIips

GPU

~20-100
GB/s

Device

Memory

Graphics Card

CPU and Main Memory
- Data Load / Unload
- Data Preparation

CPU to GPU
- High Latency
- Limited Bandwidth

GPU and Video Memory
- High Performance Parallel Rendering

Always minimize data transfer between CPU and GPU when possible

Modern Game Engine - Theory and Practice

BOOE""G GAMES104

TEC

Be Aware of Cache Efficiency

Take full advantage of hardware parallel computing

Try to avoid the von Neumann bottleneck

[]
[]
Cores Cores
200-1000
~50 GB/s
~1-8 Cache
L1 Cache GB/s
GPU
CPU bus
I ~16 GB/s £
GB/s
. Device
Main M
ain Memory e
PC Graphics Card

CPU Cache Access Latencies in Clock cycles

Mainmemory _ 167
L3 Cache - 38
L2 Cache I 11
L1 Cache I 4

GPU L2 Cache Access Latencies (measured)

Amphere L2 100ns

<2 AMDRU

NVIDIA

RDNA L2 20ns

AMD GPU Memory Latency

z 3

g
®

2 20 1638
Region Size (KB)
=HD 7950 = HD 5850 =——HD 6950 =——RXG900XT
Nvidia GPU Memory Latency
[302 387

— L i
R J—:sz.cs 244 L344-32
Iy

=,

3

Lisrg
S 22.4
:

18 32 B4 128 256 512 1024 2048 4096 B152 16384 32768 650536 131072 2602144 524288 1048576

Region Size (KB)

GTX980Ti =——GTX 1080 = GTX 2060 Mobile

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

GPU Bounds and Performance

Application performance is limited by:
« Memory Bounds

« ALU Bounds

« TMU (Texture Mapping Unit) Bound

« BW (Bandwidth) Bound

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Modern Hardware Pipeline

Direct3D 12 graphics pipeline Mesh and amplification shaders

pe—

I- I nbler

-4 Arbitrary data naplm 16k Payload _-
(—) L of your choice 5“U<'

‘' e -5 Compute shader
i) g = —e—|
= o e’

Optional shader stage _ II_ % . e J — el
Root signature data I | Root signature data _ _

Direct3D 12 compute pipeline

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Other State-of-Art Architectures

GPU:
1.825 GHz, 52CUs, 12 TFLOPS FP32, 3328 . - |
streaming processors e
[s1ve 2 [l soe 2|
|
16 GB GDDRS6, 10GB high memory interleave + ,__,: - e
6GB low memory interleave ";;‘; | 1 l. I 1 [1111 ' Scalable Data Fabric
20 channels of x16 GDDR6 @ 14 Gbps->560GB || DDE ,, “hms Ll
IRIRIRIRININIRIRINI
CPU . GDDR6 DRAM 20 x16 channels
8x Zen2 CPU cores @ 3.8 GHz, 3.6 GHz w/SMT Xbox Series X SOC Unified Memory Architecture

32KB L1 1$,32KB L1 D$,512KB L2 per CPU core

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

o

Other State-of-Art Architectures

Pass one
for draw in renderPass:
for primitive in draw:

for vertex in primitive:
el Vertex Shader B 3 E —_— Fragment Shader execute vertex shader (vertex)

if primitive not culled:

T T”‘lﬂﬂ append tile list (primitive)
DDR \ttriby P # Pass two
| . Working Set for tile in renderPass:

for primitive in tile:

Immediate Mode GPUs for fragment in primitive:

execute fragment shader (fragment)

Fragment Shader mar Local Tile

GPU —l- Tiler raa Memory
tob ot
bl l Attributes “?.f,‘i’.!-’,.‘g%

Tile-Based GPUs

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Renderable

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Mesh Render Component

« Everything is a game object in

the game world

« Game object could be
described in the component-

based way

Game Object

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Building Blocks of Renderable

Helmet

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Mesh Primitive

struct Vertex

{

[VectorB m position;
// other data

UByte4 m color;
Vector3 m normal;

struct Triangle
{ —

\Vertex m vertex[3xﬁﬁw

Modern Game Engine - Theory and Practice [RBOOMING

GAMES104

Vertex and Index Buffer

* Vertex Data
e Vertex declaration
* Vertex buffer

 Index Data
* Index declaration

* |ndex buffer

Triangle Strip

1 3 5 7

2 4 8

S
Triangle List A V D 5

Triangle Fan

PrimitiveType TriangleList
ElementStartAndCount 0 6
IndexBuffer 0 1 2 2 3 0

\

VertexPosition = (x0,y0,20) (x1y121) (x2y2z2) (x3,y3,23)
VertexUV (u0,v0) (u1,v1) (u2,v2) (u3,v3)
VertexNormal ' (nx0,ny0,nz0) (nx1,ny1,nz1) (nx2,ny2,nz2) (nx3,ny3,nz3)

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Why We Need Per-Vertex Normal

Interpolate vertex normal by triangle normal Per-Vertex normals necessary

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Materials

Base Smooth metal Glossy paint Rough stone Transparent glass

Determine the appearance of objects, and how objects interact with light

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Famous Material Models

Ambient Diffuse Specular = Phong Reflection Phong Model

PBR Model - Physically based rendering Subsurface Material - Burley SubSurface Profile

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Various Textures in Materials

ALBEDO

ROUGHNESS

NORMAL

AO

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

»

Variety of Shaders

1684 PixelOutGbuffer PS_Entry_deferred(PixelInput input}

185 v {
1686 float3 T = input.world_tangent.xyz; C t Sh d
107 float3 N = normalize(input.world_geo normal); us om a ers
188 W float3 B = cross(input.world_geo normal, input.world_tangent.xyz)
189 * input.world tangent.w;
i1ie
111 T -= dot(T, N} * N;
112 T = normalize(T);
= = = 113 B -= dot(B, N} * N + dot(B, T) * T;
Fix Function Shading Shaders e | b omatizetny;
115
116 float3x3 TBN; TBN[@] = T; TBM[1] = B; TBN[2] = N;
117
118 GBufferData gbuffer_data;
flr>af4 PSMain (PixelInput input) : SV_TARGET 119 initializeGBufferData(gbuffer data);
float3 world normal = normalize(input.world normal) ; 11? Ffalbado
float3 world view dir — normalize(world space camera pos - input.world pos); 122 floatd albedo_opacity_value = CHA(.JS_SAMPLE_TEXZD(albedo_upacity_map, input.texa);
s & - - - = 123 gbuffer_data.albedo = albedo opacity value.rgh;
float3 world light reflection dir = normalize(reflect(-world light dir, world normal)); 124
- - - - - N 125 /{normal

float3 ambient = ambient color * material.ambient; 126 float3 normal_value = decodeMormalFromiormalMapValue(normal_map.rgba).rgb;
127 gbuffer_data.world normal = normalize{mul{normal_ value.rgb, TBN));

float3 diffuse = max(0, dot(world normal, world light dir)) * 128

diffuse color * material.diffuse; 129 //specular

138 floatd specular_glossiness_value = CHAOS_SAMPLE_TEX2D(specular_glossiness_map, input.tex@);

float3 specular = pow(max(0, dot(world light reflection dir, world view dir)), shininess) * 131 gbuffer_data.reflectance = specular glossiness_value.rgb;

specular color * material.specular; 133

133 //smoothness

float3 emissive = material.emissive; 134 ghuffer_data.smoothness = specular_glossiness_value.r;

return floatd (ambient + diffuse + specular + emissive, 1.0f); 122 /a0

. 137 gbuffer_data.ao = occlusion;

38
138 /{opacity
149 float albedo opacity value = albedo opacity value.a;
141
142 float alpha_clip_value = alpha_clip;
143
144 clip(albedo_opacity_walue - alpha_clip_value);
145
146 PixelOutGbuffer out_gbuffer = (PixelOutGbuffer)e;
147 EncodeGBuffer(gbuffer_data, out_gbuffer.GBufferA, out_gbuffer.GBufferB, out_|
148
149 return out_gbuffer;

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Render Objects in Engine

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Coordinate System and Transformation

Model assets are made based on local coordinate systems,
and eventually we need to render them into screen space

G Wk
World p L View >
== |Transformation| =¥ 1 > Matrix
. Matrix |
X
e\ “11,1) - i
> \ A (111 Viewport |(x_y.)
A Picteciin (1,1,1) T Transform v
i : . e Vo1 » '|\‘- ’
Matrix \ﬁ
! X r-1.-1."J
- (11,:1)
@A)
z

Modern Game Engine - Theory and Practice

BOOMING
BTECH J GAMES104

Object with Many Materials

Expected

Mesh uvs(x,y) ...
IndexData
Shader
Material
Textures

Actual

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

How to Display Different
Textures on a Single Model

uvs(x,y) ...
© Mesh =
Y | =
Submesh 0 I Submesh 1 I Submesh 2 | Submesh 3 / C‘Oth“‘g N ;
—— ‘." ‘
offset count offset count offset count offset count

Shader 3

Material S/)
Textures Textures Textures Textures Oe S

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

- uvs(x,y) ...

IndexData
! I A I I | ' JL T 1
Submesh 0 Submesh 1 Submesh 2 Submesh 3
offset count offset count offset count offset count
Shader 1 Shader 3
- uvs(x,y) ...
IndexData
L I A I | JL T 1
Submesh 0 Submesh 1 Subrrllesh 2 Submesh 3
offset count offset count offset count offset count
Shader 1 Shader 3
Textures Textures Textures Textures

uvs(x,y) ...

IndexData
L A | JL]

[[['
Submesh 0 Submesh 1 Submesh 2 Submesh 3
offset count offset count offset count offset count

uvs(x,y) ...

IndexData
\ ' A ‘ I} I L T 1
Submesh 0 Submesh 1 Submesh 2 Submesh 3
offset count offset count offset count offset count
© Shader0 Shader | Shader2 Shader3
Textures Textures Textures Textures

Wasting of memory

Modern Game Engine - Theory and Practice

BOOMING
@TECH & GAMES104

Resource Pool

Fa N
- Mesh
\ Res Pool
*primitive 0
primitive 1
primitive 2
primitive n y
& B 4 N
Shader Texture
Res Pool Res Pool

4

\ﬁshader 0 texture OK

shader 1 texture 1 6

shader 2 texture 2 \

shader n J texture n

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Instance: Use Handle to Reuse Resources

Mesh
Res Pool

SoilderA Instance 006

(=1

primitive

SoilderA Instance 007

H

primitive

primitive 2

SoilderA Instance 008

e prJ.mJ.tJ.ve

SoilderB Instance 014

Shader

Res Pool
A

shader l}// texture 0

shader 1 texture 1

shader 2 texture 2

SoilderB Instance 015

SoilderB Instance 016 |

shader n J texture n i

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Sort by Material

Initialize Resource Pools
Load Resources

Sort all Submeshes by Materials

for each Materials
Update Parameters
Update Textures
Update Shader
Update VertexBuffer
Update IndexBuffer
for each Submeshes

Draw Primitive

end

end

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

GPU Batch Rendering

struct batchData

{
SubmeshHandle m submesh handle;
MaterialHandle m material handle;
std::vector<PerInstanceData> m per instance data;
unsigned int m instance count;

-

Initialize Resource Pools
Load Resources

Collect batchbData with same submesh and material

for each BatchData
Update Parameters
Update Textures
Update Shader
Update VertexBuffer
Update IndexBuffer
Draw Instance

0.8.6652.30497 \ & end

Development Build

[
Q . What if group rendering all instances with identical submeshes and materials together?

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Visibility Culling

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

For each view, there are a lot of objects which aren't needed to be rendered.

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

3

Culling One Object

B

~

camera view frustum

-~
-

> _
-$?:: -
near plane

far plane

View Frustum Solider Bounding Box

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Using the Simplest Bound to Create Culling

Y

BETTER BOUND, BETTER CULLING

* |nexpensive intersection tests

« Tight fitting

A

FASTER TEST, LESS MEMORY

Inexpensive to compute

Easy to rotate and transform

* Use little memory
SPHERE AABB OBB 8-DOP CONVEX HULL

Modern Game Engine - Theory and Practice

BOOMING
BTECH 7 GAMES104

Hierarchical View Frustum Culling

Quad Tree Culling

intersect

intersect

*

inside

e

\

intersect

inside

outside inside inside inside

BVH (Bounding Volume Hierarchy) Culling

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104
Construction and Insertion of BVH in Game Engine

v A ¢ ‘
s e % fiﬁi
Bottom-up - - - % . Insertion C D .

T -*a a @+ - (3 eo »
@®O® (4)(® © @ DB | @B @) (B) ©) (D)

A'>VA
%f N

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

PVS (Potential Visibility Set)

/ V. N\ BSP-Tree

() Node ®

Map Layout
O Portal R (Top View)

Modern Game Engine - Theory and Practice

BOOMING
[REon GAMES104

Portal and PVS Data

for

end

each portals Generate PVS data from portal:

getSamplingPoints () ;
for each portal faces
for each leaf
do ray casting between portal face and leaf
end
end

Potentially Visible Set

Determine potentially visible leaf nodes immediately from portal

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

The Idea of Using PVS in Stand-alone Games

Green box:

The area to determine the potential visibility where you need.

Blue cells:

Auto generated smaller regions of each green box.

for each GreenBoxs
for each BlueCells
do ray casting between box and cell
end
end

Pros

* Much faster than BSP / Octree
* More flexible and compatible

» Preload resources by PVS

Modern Game Engine - Theory and Practice

BBOOMIHG 1
TECH

o

GAMES104

GPU Culling

Render base pass

for each occludee
Begin Query
Render occludee bbox
End Query

Without PreZ

PreZ

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Texture Compression

A must-know for game engine

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Texture Compression

« Traditional image compression like JPG and PNG
- Good compression rates
- Image quality
- Designed to compress or decompress

an entire image

JPEG bits

* In game texture compression

- Decoding speed
- Random access Sample JPEG format texture
- Compression rate and visual quality

- Encoding speed

Modern Game Engine - Theory and Practice

BOOMING ~
[BooN _ GAMES104

Block Compression

Common block-based compression format

« On PC, BC7 (modern) or
DXTC (old) formats

* On mobile, ASTC (modern) or
ETC / PVRTC (old) formats

Source block (384 bits)

c0
16 bits

Compressed block (64 bits)

Colors (sorted during compression)

N

Colors (reduced for compression, 32 bits total)

2/3¢0+1/3
(computed)

cl

1/3c0+2/3c1

(computed)

Compressed block (32 bits)

00

00

01

10

00

01

10

1

10

10

1

1

10

10

1

1

cl
16 bits

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Authoring Tools of Modeling

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Modeling - Polymodeling

B Untited - Autocesk s Mo 2023

o x B untitled - Autodesk MAYA 2023: untited --- Soldier_us Jod0 C x| |7 slender
Custmze Sopeing Go hmod s ot

PR f imsed v v >

vE 60

A signin
[+ Porpectve | [stavdad | [Foces o TSGR
DR XN - (66) Collection
Sancard i

A EER| 0 o0 Q1w
- obiest T

.
Branid

[ddddddddn

=
UK

BEXER

DAL Bl <N 2]

B v RN v Hecapren

MAYA BLENDER

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Modeling - Sculpting

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Modeling - Scanning

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Modeling - Procedural Modeling

D) D/Houdini_Files/02_SideFX/Unreal V2_Demo/TUTORIAL/Desert scene_Tutoriald.hip - Houdini FX 185351

File Edit Render s Windows Help [H Build » Main

[heightfield1/Desert_split_and_ .h v » - H:] v

uild Play Launch

% obj g heightfieldl @ Desert_split_and_Scatter % obi T4 heightfeldl

Edt Go View Toos X:N @z 8PFe QD

8 Labs Worldcomposition Prepare unreal_worldconposition_preparel 3k [i] @ @ @

> 4% Tutorial
@o @) xm =) alz)(]v) =) L
et pos

©) PDG_Desert].0 HoudiniAssetActor

d Composition Visual Effects

¥ Custom Tile Number Geometry

Tile Number 7 Volumes

[Sl)

¥ Proxies AllClasses

R

/Game/Tutorial_Scene/Maps_Desert/Tut_Terrain_{tile} 45 actors (1 selected)
=% Detai ® World seting:

Tl ®
%5 [#Add Component - % Blueprint/Add Script

erial Path MaterialInstanceConstant'/Game/Desert_project/Materials;

vhlsolate Layer height

0o o e@®

Visualization

") PDG_DeserL1_(nstance)

LT ———

EEETITI BT

4 Houdini - PDG Asset Link

To NodeFiter (D >
Output Filter —HLQU'L 2
e)

o merge9

° o

=07/

wser 2 = it -
- Package Replace Mode
BAGINEWS! Limpot B SaveAll €3 | % Content » Tutorial_Scene » Maps_Desert

Bake Folder TGame HoinErgne Boke
Ty = = i~ | = e

WATING COOKING
- (W)
d 0 0
wtoria Scene "

- —_—
s Engine Content TOP N X
e Engine C++ Class
& ActorLayerUtilitie Sy Kcoloil
& ActorSequence C
£ Alembiclmporter

o 0 o
H unreal_worldcomposition_preparel
.

4TOP Net
©

“ output0

Cook Cancel Cook
o Auto Update

© View Options~

4 TOP N

Houdini Unreal

Modern Game Engine - Theory and Practice

BOOMING
BTECH GAMES104

Comparison of Authoring Methods

Polymodeling

Sculpting

Scanning

Procedural
modeling

Sample

Advantage

Flexible

Creative

Realistic

Intelligent

Disadvantage

Heavy workload

Large volume of
data

Large volume of
data

Hard to achieve

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Cluster-Based Mesh Pipeline

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Sculpting Tools Create Infinite Details

* Artists create models with infinite details

« From linear fps to open world fps, complex scene submit

10 more times triangles to GPU per-frame

» Scene Triangle Limits
- Linear FPS 2~ 790 000
- Open World FPS : > 8 000 000

A

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Cluster-Based Mesh Pipeline

GPU-Driven Rendering Pipeline (2015)

* Mesh Cluster Rendering
- Arbitrary number of meshes in single drawcall
- GPU-culled by cluster bounds
- Cluster depth sorting

Geometry Rendering Pipeline Architecture (2021)
* Rendering primitives are divided as:

- Batch: a single API draw (drawlndirect / drawlndexIndirect),

composed of many Surfs
- Surf: submeshes based on materials, composed of many Clusters

- Cluster: 64 triangles strip

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Programmable Mesh Pipeline

Thread group launch

mmmelask shader -

Thread group launch

Modern Game Engine - Theory and Practice

BBOONIHG
TECH

. GAMES104
.

GPU Culling in Cluster-Based Mesh

350k triangles to 2791 clusters

INSTANCE CULLING (FRUSTUM/OCCLUSION)

CLUSTER CHUNK EXPANSION

CLUSTER CULLING
(FRUSTUM/OCCLUSION/TRIANGLE BACKFACE)

Triangle Mask
Read/Write Offsets

INDEX BUFFER COMPACTION

MULTI-DRAW

GPU Pipeline

Modern Game Engine - Theory and Practice

BOOMING
BTECH & GAMES104

Nanite

« Hierarchical LOD clusters with seamless boundary

« Don'’t need hardware support, but using a hierarchical
cluster culling on the precomputed BVH tree by
persistent threads (CS) on GPU instead of task shader

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Take Away

1. The design of game engine is deeply related to the hardware architecture design
2. A submesh design is used to support a model with multiple materials
3. Use culling algorithms to draw as few objects as possible

4. As GPU become more powerful, more and more work are moved into GPU, which called GPU Driven

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

PILOT

Game engine

Modern Game Engine - Theory and Practice

BBOOMIHG
TECH

GAMES104

Pilot Engine — Editor and Game

Menu

W M

Ees

00 =~ o N

0

allWithDoor
LWithDoor

Door 4
q

Door

IWithWindow 1

¥
Name
>

(ithWindow 2

‘File Content

¥ Game Engi

Trans

Components Details
Editor Mode Name Ground
<Tr formComponent=
> MeshCompon
» <RigidBodyComponent>

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Pilot Engine — Source Code

£ - ® p.. 3 sour. 4 =

it

w
i

wscode 432022 11:13PM X

build

crake

engine

7| dlang farmat

I R [«clang-tidy

o e L] emake-tormat

| wgitignore 134202

| buwild_linux.ch

'] LICENSE

[# READMEmd

json11hpp

Modern Game Engine - Theory and Practice

BOOMING
[Rear GAMES104

1st release (4/4/2022)

Editor

- load / save level

- add/delete/move/rotate/scale objects
- Play In Editor (PIE)

Renderer

- forward shading

- shadow

Animation

- simple skeleton animation

Collision

- sphere and box

Character/Camera

- first / third-person camera

Motor

- eight-direction moving + sprinting
Single-threaded object-based ticking
Resource manager

Windows and Linux compatible

To be released with upcoming lectures

* More graphics features
- fox format support
- submesh
* More animation features
- animation blending
« Gameplay and script systems
« MacOS compatible
 And more...

Not implemented

* Multi-threaded framework
« Entity-Component-System (ECS)
« Space Partitioning

Modern Game Engine - Theory and Practice [RBOOMING

" GAMES104

Pilot Engine Download

= README.md

Pilot Engine

Games104 Official WebSite:
https://cdn.boomingtech.com/games104 static/upload/Pilot.zip

GitHub: https://github.com/BoomingTech/Pilot 1

(BRREE (EREER N | Q&A W ‘ (BHTE D B \ Pilot Engine is a tiny game engine used for the gams104 course.

Prerequisites
RBUERE, FIESH!

© Pilot Engine

To build Pilot, you must first install the following tools.

Windows 10/11

e Visual Studio 2019 (or more recent)
e CMake 3.19 (or more recent)

e Git 2.1 (or more recent)

MacOS >=10.15

e Xcode 12.3 (or more recent)
e CMake 3.19 (or more recent)

¢ Git 2.1 (or more recent)

Modern Game Engine - Theory and Practice

BBOOMIHG
TECH

GAMES104

Homework

Build and run Pilot Engine
Take a screenshot and upload

Please refer to homework document for details

Homework 01 (Lecture 4) : Build and Run Pilot Engine

Objective

« Building Pilot engine development environment for upcoming programming assignments
« Getting familiar with Smartchair (Assignment Submission Platform) submission flow

Description

Building Pilot engine development environment

Downloading Source Code
Course Team provided two methods to download the source code

« Download from GitHub
o https:/igithub.com/BoomingTech/Pilot

+ Download from our course-site H 0 m ewo rk DOC

o GAMES104_PA01 zip

Install CMake
Pilot Engine uses CMake to generate project files

Please refer https://cmake.org/download/ for downloading and installing CMake

Build and Run Pilot

Windows
Visual Studio 2019 or later is the recommended IDE on Windows
Generate the project files with CMake

« Run the following command from Pilot root directory:

$ cmake -S engine/ -B build

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

»

Homework

« Homework information can be found on the course-site:

http://games104.boomingtech.com/sc/course-list/

 Download the homework materials for details.

(REEES W(®REBEZR W(Q &A w(PilotEnginew.(RmYTE w

REBE, FIESH!
O Smartchair(Assignment Submission Platform) Submission Flow PDFZ

(0 PAO1:Build and Run Pilot Engine PDF

Modern Game Engine - Theory and Practice [RBOOMING GAMES104

Q&A

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104
Lecture 04 Contributor

. — St &AM QIUU

- JLEF Jason Leon CH

- AE-EF i H B Bo] 7=

- K BOOK Shine Bol RE

- INEH MANDY pe=] CC

- BNE Ber Judy A

Modern Game Engine — Theory and Practice

BOOMING
TECH

GAMES104

Enjoy ;)
Coding

Course Wechat

Follow us for
further information

