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Rendering System in Games

Q : Is there any game without rendering?

SpaceWar!

1962

Super Mario

1985

Doom

1993 2022

Horizon
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Rendering on Graphics Theory

• Objects with one type of effect

• Focus on representation and math correctness

• No strict performance requirement

- Realtime (30FPS) / interactive (10FPS) 

   offline rendering

- Out-of-core rendering

Foundation of game engine rendering!
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Challenges on Game Rendering (1/4)

Tens of thousands of objects with dozens type of effects
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Challenges on Game Rendering (2/4)

• Deal with architecture of modern 

computer with a complex 

combination of CPU and GPU
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Challenges on Game Rendering (3/4)

HD

4K

8K

Commit a bullet-proof framerate

• 30FPS (60FPS, 120FPS+VR) 

• 1080P, 4K and 8K resolution
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Challenges on Game Rendering (4/4)

• Limit access to CPU bandwidth 

and memory footprint

• Game logic, network, 

animation, physics and AI 

systems are major consumers 

of CPU and main memory
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Rendering on Game Engine

A heavily optimized practical software 

framework to fulfill the critical rendering 

requirements of games on modern 

hardware (PC, console and mobiles)
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Outline of Rendering

Basics of Game Rendering
• Hardware architecture
• Render data organization
• Visibility

Materials, Shaders and Lighting
• PBR (SG, MR)
• Shader permutation
• Lighting
      

Special Rendering
• Terrain
• Sky / Fog
• Postprocess

Pipeline
• Forward, deferred rendering, forward plus
• Real pipeline with mixed effects 
• Ring buffer and V-Sync
• Tiled-based rendering

Rendering can be 
another 20+ 
lectures

• Point / Directional lighting
• IBL / Simple GI
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What Is not Included

• Cartoon Rendering

• 2D Rendering Engine

• Subsurface

• Hair / Fur
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Building Blocks of Rendering
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Rendering Pipeline and Data

Vertex Data

Triangle Data

Millions of vertices and triangles

Material Parameters

Textures

Tens of millions of pixels with hundreds 
ALU and dozen of texture samplings
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Computation - Projection and Rasterization

Rasterization

Projection 
Transform
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Computation - Shading
A shader sample code
• Constants / Parameters
• ALU algorithms
• Texture Sampling
• Branches
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• Step1 
Use two nearest mipmap levels

• Step2 
Perform bilinear interpolation 
in both mip-maps

• Step3 
Linearly interpolate between 
the results

Computation - Texture Sampling
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GPU

The dedicated hardware to solve massive jobs

Understand the Hardware
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SIMD and SIMT

SIMD (Single Instruction Multiple Data)

• Describes computers with multiple processing 
elements that perform the same operation on 
multiple data points simultaneously

SIMT (Single Instruction Multiple Threads) 

• An execution model used in parallel computing 
where single instruction, multiple data (SIMD) 
is combined with multithreading
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GPU Architecture GPC (Graphics Processing Cluster) 
A dedicated hardware block for
computing, rasterization, shading,
and texturing

SM (Streaming Multiprocessor)
Part of the GPU that runs CUDA kernels

Texture Units
A texture processing unit, that can fetch and 
filter a texture

CUDA Core 
Parallel processor that allow data to be worked 
on simultaneously by different processors

Warp 
A collection of threads
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Data Flow from CPU to GPU

• CPU and Main Memory
     - Data Load / Unload
     - Data Preparation

• CPU to GPU
     - High Latency
     - Limited Bandwidth

• GPU and Video Memory
     - High Performance Parallel Rendering

Tips Always minimize data transfer between CPU and GPU when possible
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Be Aware of Cache Efficiency

• Take full advantage of hardware parallel computing

• Try to avoid the von Neumann bottleneck
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GPU Bounds and Performance

Application performance is limited by:
• Memory Bounds
• ALU Bounds 
• TMU (Texture Mapping Unit) Bound
• BW (Bandwidth) Bound
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Modern Hardware Pipeline

Direct3D 12 graphics pipeline Mesh and amplification shaders

Direct3D 12 compute pipeline
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Other State-of-Art Architectures

GPU：

1.825 GHz, 52CUs, 12 TFLOPS FP32, 3328 
streaming processors

DRAM：

16 GB GDDR6, 10GB high memory interleave + 
6GB low memory interleave
20 channels of x16 GDDR6 @ 14 Gbps->560GB

CPU:
8x Zen2 CPU cores @ 3.8 GHz, 3.6 GHz w/SMT
32KB L1 I$,32KB L1 D$,512KB L2 per CPU core

Xbox Series X SOC Unified Memory Architecture 
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Other State-of-Art Architectures

Immediate Mode GPUs

Tile-Based GPUs



Modern Game Engine - Theory and Practice

Renderable
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Mesh Render Component

• Everything is a game object in 

the game world

• Game object could be 

described in the component-

based way

Game Object

Components

Mesh Render
Component
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Building Blocks of Renderable
Helmet

Beard

Head

G36C

Torso
Pants
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Mesh Primitive
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Vertex and Index Buffer

• Vertex Data
• Vertex declaration

• Vertex buffer

• Index Data
• Index declaration

• Index buffer
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Why We Need Per-Vertex Normal

Interpolate vertex normal by triangle normal Per-Vertex normals necessary
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Materials

Base Smooth metal Glossy paint Rough stone Transparent glass

Determine the appearance of objects, and how objects interact with light
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Famous Material Models

Phong Model

PBR Model - Physically based rendering Subsurface Material - Burley SubSurface Profile
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Various Textures in Materials



Modern Game Engine - Theory and Practice

Variety of Shaders

Fix Function Shading Shaders

Custom Shaders
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Render Objects in Engine
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Coordinate System and Transformation
Model assets are made based on local coordinate systems, 
and eventually we need to render them into screen space
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Object with Many Materials

Expected Actual

positions(x,y,z)  ....

uvs(x,y)  ....

IndexData

Vertex
Data

Mesh

Shader

Textures
Material
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How to Display Different 
Textures on a Single Model

Submesh 0 Submesh 1 Submesh 2 Submesh 3

offset count

positions(x,y,z)  ....

uvs(x,y)  ....

IndexData

Vertex
Data

Shader 0

Textures

offset count offset count offset count

Shader 1

Textures

Shader 3

Textures

Shader 2

Textures
Material

Mesh

Helmet

Skin

Clothing

Shoes
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Submesh 0 Submesh 1 Submesh 2 Submesh 3
offset count

positions(x,y,z)  ....

uvs(x,y)  ....

IndexData

Vertex
Data

Shader 0
Textures

offset count offset count offset count
Shader 1
Textures

Shader 3
Textures

Shader 2
Textures

Submesh 0 Submesh 1 Submesh 2 Submesh 3
offset count

positions(x,y,z)  ....

uvs(x,y)  ....

IndexData

Vertex
Data

Shader 0
Textures

offset count offset count offset count
Shader 1
Textures

Shader 3
Textures

Shader 2
Textures

Submesh 0 Submesh 1 Submesh 2 Submesh 3
offset count

positions(x,y,z)  ....

uvs(x,y)  ....

IndexData

Vertex
Data

Shader 0
Textures

offset count offset count offset count
Shader 1
Textures

Shader 3
Textures

Shader 2
Textures

Submesh 0 Submesh 1 Submesh 2 Submesh 3
offset count

positions(x,y,z)  ....

uvs(x,y)  ....

IndexData

Vertex
Data

Shader 0
Textures

offset count offset count offset count
Shader 1
Textures

Shader 3
Textures

Shader 2
Textures

...

Wasting of memory
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Resource Pool



Modern Game Engine - Theory and Practice

Instance: Use Handle to Reuse Resources 
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Sort by Material
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GPU Batch Rendering

What if group rendering all instances with identical submeshes and materials together?Q :
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Visibility Culling
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For each view, there are  a lot of objects which aren't needed to be rendered.
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Culling One Object

View Frustum Solider Bounding Box
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Using the Simplest Bound to Create Culling 

• Inexpensive intersection tests

• Tight fitting

• Inexpensive to compute

• Easy to rotate and transform

• Use little memory
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Hierarchical View Frustum Culling

Quad Tree Culling BVH (Bounding Volume Hierarchy) Culling
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Top-down

C D

Incremental tree-insertionBottom-up

Construction and Insertion of BVH in Game Engine
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PVS (Potential Visibility Set)
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Portal and PVS Data

Determine potentially visible leaf nodes immediately from portal

Generate PVS data from portal:
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The Idea of Using PVS in Stand-alone Games

Green box: 

The area to determine the potential visibility where you need.

Blue cells: 

Auto generated smaller regions of each green box.

Pros
• Much faster than BSP / Octree
• More flexible and compatible
• Preload resources by PVS
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GPU Culling
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Texture Compression
A must-know for game engine
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Texture Compression

• Traditional image compression like JPG and PNG 

     - Good compression rates

     - Image quality

     - Designed to compress or decompress 

       an entire image

• In game texture compression 

     - Decoding speed

     - Random access

     - Compression rate and visual quality

     - Encoding speed

Sample JPEG format texture
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Block Compression

Common block-based compression format

• On PC,  BC7 (modern) or 
DXTC (old) formats

• On mobile, ASTC (modern) or 
ETC / PVRTC (old) formats
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Authoring Tools of Modeling
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Modeling - Polymodeling

MAX MAYA BLENDER
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Modeling - Sculpting
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Modeling - Scanning
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Modeling - Procedural Modeling

Houdini Unreal
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Comparison of Authoring Methods

Polymodeling Sculpting Scanning Procedural 
modeling

Sample

Advantage Flexible Creative Realistic Intelligent

Disadvantage Heavy workload Large volume of 
data

Large volume of 
data Hard to achieve
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Cluster-Based Mesh Pipeline
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Sculpting Tools Create Infinite Details
• Artists create models with infinite details 

• From linear fps to open world fps, complex scene submit 

10 more times triangles to GPU per-frame
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Cluster-Based Mesh Pipeline

GPU-Driven Rendering Pipeline (2015)
• Mesh Cluster Rendering

     - Arbitrary number of meshes in single drawcall

     - GPU-culled by cluster bounds

     - Cluster depth sorting

Geometry Rendering Pipeline Architecture (2021)
• Rendering primitives are divided as:

     - Batch: a single API draw (drawIndirect / drawIndexIndirect),

                  composed of many Surfs

     - Surf: submeshes based on materials, composed of many Clusters 

     - Cluster: 64 triangles strip
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Programmable Mesh Pipeline
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GPU Culling in Cluster-Based Mesh

350k triangles to 2791 clusters GPU Pipeline
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Nanite

• Hierarchical LOD clusters with seamless boundary

• Don’t need hardware support, but using a hierarchical 

cluster culling on the precomputed BVH tree by 

persistent threads (CS) on GPU instead of task shader
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Take Away

1. The design of game engine is deeply related to the hardware architecture design

2. A submesh design is used to support a model with multiple materials

3. Use culling algorithms to draw as few objects as possible

4. As GPU become more powerful, more and more work are moved into GPU, which called GPU Driven
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Pilot Engine – Editor and Game
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Pilot Engine – Source Code



Modern Game Engine - Theory and Practice

• Editor
     - load / save level
     - add/delete/move/rotate/scale objects
     - Play In Editor (PIE)
• Renderer
     - forward shading
     - shadow
• Animation
     - simple skeleton animation
• Collision
     - sphere and box
• Character/Camera
     - first / third-person camera
• Motor
     - eight-direction moving + sprinting
• Single-threaded object-based ticking
• Resource manager
• Windows and Linux compatible

1st release (4/4/2022)
To be released with upcoming lectures

• More graphics features
     - fbx format support 
     - submesh
• More animation features 
     - animation blending
• Gameplay and script systems
• MacOS compatible
• And more…

• Multi-threaded framework
• Entity-Component-System (ECS)
• Space Partitioning

Not implemented
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Pilot Engine Download

Games104 Official WebSite: 
https://cdn.boomingtech.com/games104_static/upload/Pilot.zip

GitHub：https://github.com/BoomingTech/Pilot
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Homework
• Build and run Pilot Engine

• Take a screenshot and upload

• Please refer to homework document for details

Homework Doc Screenshot
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Homework

• Homework information can be found on the course-site:

http://games104.boomingtech.com/sc/course-list/

• Download the homework materials for details.



Q&A
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Follow us for
further information

Enjoy ;)
Coding

Course Wechat


